Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

نویسندگان

  • Shijian Zheng
  • John S. Carpenter
  • Rodney J. McCabe
  • Irene J. Beyerlein
  • Nathan A. Mara
چکیده

Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. Here we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability of one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. Taken together, these results demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of interface-dominant bulk Cu/V nanolamellar composites by cross accumulative roll bonding

Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successf...

متن کامل

Properties and Nanostructures of Materials Processed by Spd Techniques

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostruct...

متن کامل

Ultra-Fast Diffusion in Severely Deformed Materials

1. Introduction Severe plastic deformation (SPD) is nowadays used to produce sizeable amounts of bulk nanocrystalline materials, which renders them suitable for different innovative applications, owing to favourable combinations of high mechanical strength and enhanced ductility they offer. Enhanced grain boundary diffusion is largely responsible for the resulting property combinations. SPD pro...

متن کامل

A review on nanostructured stainless steel implants for biomedical application

Over the last two decades, many researchers have developed a variety of stainless steel-based medical implant types,taking full advantage of nanostructuring technologies. In this paper the application, fabrication and development of nanostructured stainless steel based materials with new composition for medical implants will be discussed. It is well established that application of severe plasti...

متن کامل

Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures

Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014